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ABSTRACT 

The matrix Q,P has played an important role in analysis of geodetic and/or photogrammetric system reliability. The purpose of this 

short paper is to show that the diagonal elements of Q,P can be larger than one, if the weight matrix P has non-zero off-diagonal 

elements. An alternative to Qi'P is proposed, and the derived redundancy should be interpreted in terms of the transformed 

observations. A simple example ofphotogrammetric relative orientation completes our discussion. 

1. INTRODUCTION 

The modem theory of observations or errors in geodesy, 
photogrammetry and remote sensing considers errors under the 
three categories: random error, systematic error and blunder or 
gross error (Mikhail & Ackerman 1976). Random observation 
errors are not predictable and describe the dispersion of the 
samplings of an observation from its true, generally unknown 
value. They have been extensively and deeply studied from the 
statistical point of view. Systematic errors are essentially 
deterministic. The effect of systematic errors on the quantities 
of interest is systematic, and cannot be removed by repeat 
measurement. Proper remodeling is the key to eliminating this 
type of effect. 

Gross errors are not random. They can be practically caused by 
a variety of environmental effect, operator mistakes and/or 
failure of measuring instruments. In geodesy, the percentage of 
gross errors may be about l % (Kramp & Kubik 1982), though 
some precautions and checking have been made during in-site 
measurement. From the statistical point of view, the 
observations contaminated by gross errors can not be 
considered as being the samples from a distribution in question. 
It has been aware of the danger of gross errors, since even an 
intermediate blunder may cause a complete failure of the least 
squares adjustment. So far, there are two ways of handling gross 
errors: rigorous statistical testing and numerical or robust 
estimation. For more detail, see e.g. Baarda (1968), Huber 
(1981), Hampel et al. (1986), Li (1988). 

It is of at least equal importance to consider and design some 
measures to assess possible effect of gross errors at the phase of 
building adjustment models. Probably, the study of the problem 
resulted in Baarda's well respected theory of reliability (Baarda 
1968, 1973). The reliability of an adjustment model describes 
the resistance ability of the model against gross errors. It 
consists of two aspects: internal and external reliability. The 
former is the measure of the minimum detectable gross error by 
the (mathematical and stochastic) model to be built, while the 
latter describes the effect of the maximum undetectable gross 
errors on the model parameters. 
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The reliability has since become one of the basic quality 
measures or criteria in design of geodetic and determination 
networks ( e.g. Schaffrin I 985; Wimmer 1982). 

When the weight matrix P of an adjustment model is diagonal, 

Baarda's internal reliability measure depends on P; and Y,;, in 

addition to the pre-selected significance level and testing power. 

Here r;,- is the ith diagonal element of the matrix QwP , and is 

called the redundancy by Forstner ( 1979). It has since been 
widely employed as an alternative and important measure of the 
internal reliability (see e.g. Niemeier 1985; Li 1988). Thus the 
matrix QwP is now often named as the reliability matrix. Shan 

( 1988) developed a fast algorithm to compute it. 

The purpose of this note is to show that the diagonal elements 

r,; of the matrix Q.,.P are not necessarily falling between O and 

l, if the weight matrix P has off-diagonal elements. In this case, 

r;,- can no longer serve as the redundancy, neither is it proper to 

call the matrix QwP the reliability matrix. A tentative 

alternative is proposed for the redundancy. A simple 
photogrammetric example completes our discussion. 

2. COMPUTING THE REDUNDANCY 

2.1 The Independent Observation Model 

Let the starting linear (or linearized) photogrammetric (and/or 
geodetic) adjustment model be 

E(Y) = AX,Y =AX+&, 

2 -u½- 2 aY; - P, - a el ~ (1) 

cov(y;, y 1 ) = O,i * j = 1,2, · · ·, n 

Here E( ·) is the operator of mathematical expectation, Y is the 

observation vector with n elements y, , A is the design matrix, X 



is the unknown vector, c is the observation error vector, er . 2 
Y, 

is the variance of the ith observation, c; 2 is the (known or 

unknown) variance component, cov(-,·) is the operator of 

statistical correlation. Since the correlations between any two 
observations are all equal to zero, the observations Y are 
statistically independent. The linear model (I) can be rewritten 
in matrix form as follows, 

E(Y) = AX,Y =AX+ c 

D(Y) = P-1cr2 

where P is the diagonal matrix. 

(2) 

For the linear model (2), the least squares adjusted vector Y of 
the observations Y and the residuals 

&=Y-Y (3) 

are estimable. They are invariant with respect to any generalized 
inverse of the normal matrix (AT PA). On the other hand, the 

major interest of this paper is in computation of the redundancy. 
Without loss of generality, we shall assume in the following that 
the design matrix A has full column rank. Then (3) becomes 

i = Y - AN-IAT PY 

= (I -AN-1AT P)c 

= (P-1 -AN-1AT)Pc 

Here N = AT PA,Q, = P-1 -AN-1AT. 

(4) 

A 

It is obvious from (4) that the residuals & depends linearly on 
the observation errors & . The elements of the matrix Q,P may 

reflect to some extent the effect of the errors £ on the residuals 

£. In particular, the diagonal elements of Q,P may be a 
A 

numerical indicator of the effect of &; on £;. Therefore, Q, P 

has been usually called the reliability matrix, and the diagonal 

elements 1';; the redundancy, since O :<,; ',; :<,; l if the weight 

matrix P is diagonal. 

2.2 The Correlated Observation Model 

The matrix form of the correlated observation model is 

where p is 
elements. 
Let 

where 

E(Y) = AX,Y = AX+ c 

D(Y) = P-1cr2 

the weight matrix with 

~ .. ) =Q-P 
lJ n"n E 

l'j 'i2 r1, 'in 

r21 r2 r2, 1in 
,.,1 rn ri r,n 

rnl "'12 1:13 rnn 

(5) 

non-zero off-diagonal 

(6) 
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(7) 

with q;, being the elements of the matrix Q;(= P-1 -AN-1AT). 

Since Q,P is the projection matrix, we have 

Q,P = (Q,P)(Q,P) or for the ith diagonal element of Q,P, 

n n 

1t = Ll;1r1; = L'11rP +r/ (8) 
J=I J=l,j"F-i 

Denote 

(9) 

where 

[
P1j] [qj1] 

- = P2j - = qj2 
P1 : ,q1 : . . 

Pnj qjn 

hence (8) becomes 

Ii = C; + 1;2 (10) 

It can be easily proven that if the absolute value of r; is less 
than or at most equal to the unity, we must have 

(11) 

which is true, only if the weight matrix P is diagonal. Since (7) 
reduces in this case to 

(12) 

and 

n n 

c; = L',jrp = L%Pjqpp, 
j= IJ:1:.1 J=l,)'#i 

(13) 

Unfortunately, (11) is generally not true, if the observations are 

correlated, since C; = cf/ (pj ® P; )qj is not a positive definite 

binomial. Thus the matrices Q, P can not serve as a proper 

reliability matrix, nor are ,; called the redundancy, since ,; can 

fall outside O and I. 

2.3 An Alternative to Q,P 

Assume that the weight matrix P is positive definite. Then we 
have 



P=UAUT 

= ufl,tt,ur 
(14) 

Where U is the orthonormal matrix, A is the eigenvalue matrix 
with positive diagonal elements. Use of U and Y is made to 
form the following new observations 

(15) 

which are uncorrelated with the unit variance-covariance matrix. 

Hence the cofactor matrix of the new residuals (Y' -Y') is 

which is clearly a kind of rearrangements of the matrix Q,P. It 

is clear that Q,. has all the properties of Q,P , i.e., 

(a) Q;, is an idempotent matrix, 

(b) The total redundant observation number r is equal 
to the trace of Q,. , 

r = tr(Q,.) = tr{! -A.7iur AN"' AruA_Y,} 

= n - t = tr(QJ) 

More important is that Q,. is semi-positive definite, and 

0 s; Q,. s; I ( 17) 

holds true for any positive definite weight matrix P. Therefore, 
one may call Qi. the reliability matrix of the adjustment model 

(5), and the diagonal elements ,;, = q, the redundancy. One 

should be careful, however, in interpreting the result. ru now 

give a picture of the redundancy of the new, uncorrelated 
observations y; instead of y,. 

3. A SIMPLE EXAMPLE OF PHOTOGRAMMETRIC 
RELATIVE ORIENTATION 

Given an image pair, photogrammetric relative orientation is to 
solve for the five elements of relative orientation between the 
left and right photos. The starting point is the coplane equation 
of three points. The example of this note is to deal with the 
relative orientation of the consecutive photo connection. The 
observation equation of a point is given by 

q = t:ibY + 1/J !:lb,+ x1/J Mp'+ (f + YIJ )!:iw' + x'!:'J.K' + t:q 

(18) 

Let n points be chosen to solve for the five unknowns. Then the 
matrix form of the observation equations is 

Y=AX+t: (19) 
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Generally, six points are chosen, and the observations are 
uncorrelated. In order to illustrate the computation of the 
redundancy with full weight matrices, however, we employ 
sixteen points and assume on purpose that the weight matrix for 
this relative orientation problem has non-zero off-diagonal 
elements. It is generated by using the correlation function, 

f(x) = exp{-2.5 x 0.05x2 } (20) 

No. diagonal elements of Q,P diagonal elements of Q,. 

1 0.301785 0.001882 
2 0.474687 0.211125 
3 1.148344 0.034564 
4 0.573400 0.277935 
5 0.667905 0.123565 
6 0.495162 0.722902 
7 0.396784 0.852520 
8 1.099681 0.996166 
9 0.781673 0.806883 
10 0.804491 0.995447 
11 0.980285 0.978314 
12 0.427515 0.999783 
13 0.756525 0.998937 
14 0.273823 0.999977 
15 1.156935 0.999999 
16 0.661005 0.999999 

sum 11.000000 11.000000 

Table 1. diagonal elements of matrix Q;P and Q,. 

Listed in column two of Table 1 are the sixteen diagonal 
elements of the matrix Q, P . Three diagonal elements (Q,P }u 
are larger than unity, with the value of 1.14, 1.09, and 1.15, 
respectively. Thus, in this case, the diagonal elements of the 
matrix Q;P cannot be interpreted in terms of redundancy. 

Q,P can no longer serve as the reliability matrix. 

Column three of Table 1 gives the sixteen redundancies of the 
transformed observations. They are clearly smaller than one. It 
is interesting to note that eight r,, are close to one, which means 

that only half of the new derived independent observations are 
employed to solve for the five relative orientation parameters, 
and another half is almost completely redundant. This is 
probably due to the high correlation of the original observations. 
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